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Abstract-The steady and time-periodic flow of air in a differentially heated cubical cavity has been studied 
numerically, using the finite-volume method. In the steady flow regime, the scaling in the boundary layer 
along the wall has been investigated. In the periodic flow regime, the calculated frequency was almost the 
same as for the two-dimensional square cavity, suggesting that the same instability mechanism is in both 
cases responsible for the bifurcation. There was, however, a strong three-dimensionality in the distribution 

of the amplitude of the oscillations. 

1. INTRODUCTION 

A LOT OF investigation in heat-transfer and fluid flow 
research in the past decades has been spent on study- 
ing natural-convection flows in rectangular cavities, 
both numerically and experimentally. Originally this 
effort was motivated by the many technical appli- 
cations ; later, this type of flow also became a popular 
test-case to compare numerical algorithms which are 
used to solve the Navier-Stokes equations. 

The calculation of the steady laminar flow of air in 
a 2D square cavity with differentially heated sidewalls 
and adiabatic horizontal walls served as a comparison 
problem in a workshop organized by de Vahl Davis 
and Jones [l]. The flow was calculated for Rayleigh 
numbers up to 106. Later, results for higher Rayleigh 
numbers have also been obtained. At higher Rayleigh 
numbers, the boundary layers in the cavity are 
thinner, making it more difficult to perform an accur- 
ate calculation. 

More recently, interest in these flows has come from 
the study into the transition to turbulence that occurs 
when the Rayleigh number is increased to large values. 
The steady laminar flow loses its stability at a critical 
Rayleigh number of approximately 1.75 x 10’ and 
changes character through several so-called bifurca- 
tions until finally a fully turbulent state is estab- 
lished at a sufficiently large Rayleigh number. Accur- 
ate results for the first bifurcation of air in a two- 
dimensional square cavity with adiabatic horizontal 
walls have been obtained by Janssen and Henkes [2] 
using a finite-volume method to discretize the equa- 
tions. However, they had to use grids with up to 
360 x 360 grid points to establish this accuracy. The 
critical Rayleigh number is considerably decreased if 
the adiabatic horizontal walls are replaced by perfectly 
conducting horizontal walls. Now, the first bifurca- 
tion occurs at Rayleigh numbers just beyond lo6 

and the boundary layers are still relatively thick, mak- 
ing it possible to use coarser grids and still obtain 
accurate results. Henkes [3] calculated the onset of 
the transition to turbulence with perfectly conducting 
horizontal walls in an air-filled cavity using grids with 

up to 80 x 80 grid points and found that the first 
bifurcation was a Hopf-bifurcation originating from 
the corners of the cavity where the lower (upper) 
horizontal boundary layer hits the hot (cold) wall. 
The same problem was also addressed by several other 
authors : Le QuCre and Alziary de Roquefort [4, 51, 
Winters [6] and Jones and Briggs [7]. Especially Win- 
ters, who performed a linear stability of the steady 
flow, showed through grid refinement that his results 
were very accurate. The critical Rayleigh number cal- 
culated by Winters is 2.1092 x 106, which is in very 
good agreement with the value of 2.10 x lo6 obtained 
by Henkes [3]. 

All these calculations were performed using a two- 
dimensional geometry. Although Mallinson and de 
Vahl Davis [8] already performed calculations for the 
three-dimensional geometry, in which the horizontal 
and the lateral walls were taken adiabatic, they had 
to use very coarse grids (typically 153 grid points). 
Only now, after the development of more powerful 
computers and better numerical algorithms, is it 
becoming feasible to perform such calculations in a 
three-dimensional geometry for high Rayleigh num- 
bers using appropriate grids. Le Peutrec and Lauriat 
[9] studied the heat losses through glazed side walls of 
air and water-filled enclosures for Rayleigh numbers 
up to 107, using grids with up to 413 grid points. 
Fusegi et al. [lo] calculated the steady heat transfer 
through an air-filled differentially heated cubical cav- 
ity with adiabatic horizontal walls for Rayleigh num- 
bers up to lo6 using grids with up to 623 grid points. 

Especially for the investigation of the laminar-tur- 
bulent transition, three-dimensional calculations will 
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ratio depth/height of cavity 
thermal diffusivity 
frequency 
flux vector 
acceleration of gravity 
height of cavity 
number of grid points in .x-direction 

Nusselt number hot wall 
r-averaged Nusselt number at hot wall 
Prandtl number, V/U 
pressure 
Rayleigh number, ,yflATH ‘/VLI 

stratification in cavity centre 
source term in generic equation 
temperature 
temperature of cold wall 
temperature of hot wall 
reference temperature 
velocity component in the x-,-direction 
maximum of .u-direction velocity along 
the vertical line through the cavity 

centre 
maximum of vertical velocity along the 
horizontal line through the cavity 
centrc 
coordinate direction. 

Greek symbols 

lj coefficient of thermal expansion 

f_,,, diffusion coefficient for generic 
variable 

d Kronecker-delta 
A difference between two successive values 
1’ kinematic viscosity 

I’ density 
(T shear-stress 

4 generic variable. 

Superscript 
I1 time-level 

Subscripts 
i .u-index grid point 

.i r-index grid point 
k r-index grid point 
E surface at i+ I/:! 
W surface at i- l/Z 
N surface at ,j+ 112 
S surface at j- l/2 
F surface at k + l/2 
B surface at k - l/3. 

NOMENCLATURE 

be of interest. Since turbulence is a three-dimensional 
phenomenon, at some stage in the transition process 
instabilities in the third dimension must occur. The 
only three-dimensional calculation (to our knowl- 
edge) of the flow in the transitional regime in an air- 
filled cubical cavity with conducting horizontal walls, 
was carried out by Fusegi et al. [ 1 I]. They performed, 
however, only a calculation at a single Rayleigh num- 
ber in the transition regime. They did not investigate 
any further the influence of the third dimension on 
the critical Rayleigh number of the flow and they did 
not discuss the character of the instability mechanism. 

In the present investigation. 3D calculations were 
performed for air both in the steady and unsteady 
flow regimes. The horizontal walls were taken either 
adiabatic (in all instances resulting in steady flow) 
or perfectly conducting (resulting in either steady or 
periodic flow). The lateral walls were also taken to bc 
either adiabatic or perfectly conducting. In the steady 
flow regime, some consideration is given to the bound- 
ary layer which, for Rayleigh numbers considered here 
( 2 loo), develops along the walls perpendicular to 
the third dimension. Attention however, is focused 
primarily on cdhhting the flow near the critical Ray- 
leigh number at which the first bifurcation occurs and 
on establishing the accuracy of the obtained results, 
by employing systematic grid refinement up to grids 
with 1203 grid points. We compare these three-dimen- 

sional results with results obtained by Henkes [3] for 
the two-dimensional cavity. It is investigated how the 
three-dimensionality of the flow influences both the 
kind of instability that occurs first and the critical 
Rayleigh number at which the instability appears. 
Also. it is studied how the structure of the oscillating 
flow is influenced by the presence of the lateral walls. 
Furthermore. it is investigated whether the two spatial 

symmetries, present in the steady flow below the 
critical Rayleigh number. are maintained after the 
bifurcation. 

2. GOVERNING EQUATIONS 

Considered is a cubical cavity with height. width 
and depth H, as depicted in Fig. I. The left and right 
vertical walls are both isothermal ; the left wall is hot 
with temperature T,,, and the right wall is cold with 
temperature T,. The remaining four walls can be taken 
either adiabatic or conducting. The gravitation g acts 
in the negative x,-direction. Air is the working fluid. 

The flow in the cubical cavity is described by the 
three-dimensional, unsteady Navier-Stokes equa- 
tions. Under the Boussinesq approximation, these 
equations read : 

iill, 

as, O 
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FIG. 1 The geometry under consideration. The height of the 
cavity is H. 

z + $(UjU’) = - $ g+gB(T-T,)6,,+v& 
I I / 

..: 
_... 

T, 

9 

g+ $u,T) = us. 
I / J 

(1) 

Here, the summation convention has been used, i.e. a 
summation (from 1 to 3) has to be performed over 

repeated indices in every term. In equations (l), Ui 
denotes the velocity component in the x,-direction, t 
denotes time, p is the (constant) density, p is the 
pressure, /I is the coefficient of thermal expansion, T 
is the temperature, T, is a reference temperature, 6 is 
the Kronecker-delta, v is the kinematic viscosity and 
a the thermal diffusivity. 

These equations can be made dimensionless using 
the length scale H, the time scale H/J(g/lATH), the 
temperature scale T,, = (T,+ T,)/2 and the tem- 
perature difference AT = T,, - T,. This leads to a set 
of nondimensionalized equations which are governed 
by only two characteristic numbers : the Rayleigh 
number Ra E gpATH3/va and the Prandtl number 
Pr B v/a. In this study only air is considered with 
Pr = 0.71 ; for air the only free parameter left is the 
Rayleigh number. 

To fully specify the mathematical problem, both 
initial and boundary conditions have to be given. For 
the velocities we take the no-slip condition at all walls : 

u, =u2=u3=0 at x, =O,H; 

x2 =O,H; xx =O,H. (2) 

For the temperature, several boundary conditions will 
be considered. The left and right vertical walls are 
always isothermal : 

T=T,, at x,=0 (3) 

T=T, at x,=H, (4) 

whereas the top/bottom horizontal (x2 = 0, H) and 
the back/front (x3 = 0, H) vertical walls can be taken 
as adiabatic : 

aT 
- = 0 at x, = 0, H (n = 2,3), 
ax, 

(5) 

in which x, denotes the coordinate normal to the wall. 
These walls can also be taken as perfectly conducting : 

T= T,,-(x,/H)(Th-T,) at x, = 0,H (n = 2,3). 

(6) 

As initial condition we take either a solution obtained 
for a lower Rayleigh number or we take a previous 
solution for the same Rayleigh number but using a 
different number of grid points (if necessary, the solu- 
tion is interpolated to the new grid). Our main interest 
is not in the transients but in the behaviour of the 
solution for large time. 

For ease of notation, in the following x,, x2 and xj 

will be denoted as x, y and z respectively and u, , u2 
and uj will be denoted as u, u and w respectively. 

3. DISCRETIZATION AND SOLVER 

3.1. Finite-volume method 
The equations (1) are discretized by the finite- 

volume method, as introduced by Patankar and 
Spalding [12]. The finite-volume method divides the 
computational domain into rectangular volumes. 
Unknown u-velocities are positioned in the middle of 
the left and right vertical sides of the finite volume, 
v-velocities are positioned in the middle of the hori- 
zontal sides and w-velocities are positioned in the 
middle of the front and back vertical sides. Scalar 
unknowns @ and T) are positioned in the centre of 
the finite volume. This staggered-grid concept was 
introduced by Harlow and Welch [ 131 and has advan- 
tages in discretizing the pressure gradients in com- 
bination with the continuity equation. 

To explain the finite-volume method we consider 
the three-dimensional convectiondiffusion equation 
for the generic variable C$ : 

Here, f is the flux vector and S, is a source term. The 
flux vector is the sum of a convection part f’ = W#J 
and a diffusion part fd = -I,VC$. Equation (7) is 
integrated over the finite volume around grid point (i, 
j, k), rewriting V*f as fluxes through the sides of the 
(i, j, k)-volume with the help of Gauss’ divergence 
theorem. (The integration is performed over the finite 
volumes around the staggered grid points for the vel- 
ocities u, u and w if the momentum equations are 
considered). We obtain : 

s zdxdydz+ 
voI. ij,k at s 

]fE -fwl dy de 
side 

+ 

s 

If, -fs] dx dz + 
side s 

Eide I% -_&I dx dy 

= 
f 

S, dx dy dz. (8) 
vol. ij,k 

The subscripts E, W, N, S, F and B referJo the east, 
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west, north, south, front and back side of the volume 
respectively. The remaining integrals are approxi- 
mated as : 

+LL,+ I,x-.f;., I,U 1 A.~ A,= + If; .,,, L c / 2 -.t.,.i I 21 A-Y AJ 

= (S,),,,, Ax Ay Az+Ax Ay AzO(Ax’. Ay’, A?), (9) 

in which the size of the grid is Ax = .Y,+ ,,.z-_\-, , :, 
Ay=y,+, z-~‘,_,,z and Az==,<+,,~-z,_, 1. The 
finite-volume method has the advantage that it 
gives a conservative discretization : numerical mass, 
momentum and heat fluxes can bc indicated that are 
conserved over the domain. The integration in time 
in equation (9) is performed fully implicitly : all spatial 
derivatives are evaluated at the new time level 11. The 
unsteady term. the fluxes and the source arc further 
discretized with finite differences. The unsteady term 
at the time level n is discretized with three time levels. 
giving a second-order truncation error in time : 

Here At denotes the constant time step size t”” - t”’ ‘I. 
The diffusion part of the flux is discretized with a 
second-order truncation error : 

In order to discretize the convection flux, it is rewritten 
as : 

.A* I~L.,.i\ = UP+ I.2.,.k&. (12) 

where & is an approximation for 4 at the east side 
of the volume (i, j, k). In the discrctization of the 
temperature equation the convecting velocity u has a 
grid point precisely at the east side of the volume, and 
no further interpolation for u is needed. For the U, L 
and M‘ equations the value for the velocity at the 
side is found from taking the average value of two 
neighbouring grid points. For the convection, the fol- 
lowing discretization was used : 

dJF = ic4,.,., +4< i I.,.!. 1. (13) 

which leads to the well-known central-differencing 
scheme for the convection. 

The pressure plays a peculiar role in the incom- 
pressible Navier-Stokes equations, because the pres- 
sure does not appear in the continuity equation. 
Therefore, the continuity equation acts as a constraint 

on the velocity field : the pressure has to be determined 
such that the velocity field in the momentum equation 

satisfies the continuity equation. This implies that the 
divergence operator in the continuity equation and the 
gradient operator for the pressure in the momentum 
equation are closely related. Careless discretization of 

the continuity equation and the pressure gradient can 
lead to a large numerical inaccuracy (wiggles) in the 
pressure. For a two-dimensional geometry. Van Kan 
[14] shows that the finite-volume method on a &tap- 
gered grid leads to a proper discretization. lfhis results 
are extended to the three-dimensional geometry. this 
gl vcs : 

II’ $_ 
“’ = O(A.\-‘. A,?, AZ’) (14aj 

Here the discretizdtion of the continuity equation is 
found by integration over the finite volume (i. j, k). 
The discretizations of the x, y and z pressure gradient 
appear as the sources S,,, S, and S,, in the momentum 
equations. 

3.2. Grid distribution 

The grid is constructed by firstly distributing the 
velocity grid lines according to a stretching function. 
This distribution is such that the boundaries of the 
physical domain coincide with velocity grid lines. Sec- 
ondly, the scalar points are placed precisely in the 
centre of the scalar volumes. For the u-velocities the 
stretching function is chosen as : 

The same distribution function is used to distribute 
the c- and btb-velocities. This distribution concentrates 
grid points in the boundary layers along the walls. 

In order to discretize the boundary conditions, the 
grid is extended across the boundaries, introducing 
one extra (virtual) grid point. Dirichiet boundary 
conditions for the temperature are discretized with 
second-order accuracy, using the virtual point. For 

example : 

where in,;,,+ I denotes the virtual point. Homo- 
geneous Neumann boundary conditions for the tcm- 
perature are applied by setting the value at the virtual 
point equal to the value at the first inner grid point, 
which also gives a second-qrder accurate discret- 
ization. The no-slip boundary conditions for u at the 
west and east boundaries, for ~1 at the north and south 
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boundaries and for w at the front and back boundaries (i.e. du/dp = 2At/3pAx, dv/dp = 2At/3pAy and 
are applied by setting all velocity grid points at the dw/dp = 2At/3pAz). Substitution of equations (17) in 
boundaries to zero. The zero boundary conditions for the discretized continuity equation (14a) gives the 
the velocities at the boundaries in the non-staggered equation for the pressure correction, which is nothing 
coordinate directions are applied by using a virtual but a discretization of a Poisson equation for p’ : 
point, leading to an equation similar to equation (16). 

2 f a2pl tL+_+!&;g !T+““+!!!g. 
ay z ( ay > 

3.3. Solution method 
As an implicit method is used to discretize the time- (18) 

dependent equations, at each new time level n a system 
of nonlinear algebraic equations has to be solved. The At the walls a zero gradient correction is prescribed. 

solving of the different transport equations (for u, v, When the Gauss-Seidel process is fully converged the 

w and T) is decoupled. The discrete systems belonging right-hand side of equation (18) vanishes, giving a 

to each of the transport equations are iteratively zero pressure correction. Discretization of equation 

solved by a line Gauss-Seidel method. Alternating (18) gives a symmetric band-matrix for the pressure 

Gauss-Seidel sweeps are made from the back to the correction, which has only seven diagonals with non- 

front and from the front to the back side of the com- zero entries. Probably the best way to solve the result- 

putational domain. During a sweep from the back to ing set of equations when a nonuniform grid is 

the front sides, at each plane of constant z, a sweep employed, is to use an iterative solver. Our solver 

is performed from the west to the east side of the was based on the preconditioned conjugate gradient 

computational domain. During a sweep from the method, as described by Meijerink and Van der Vorst 

front to the back side, at each plane of constant z, a [15] and by Van der Vorst [ 161. In this method, a 

sweep is performed from the east to the west side of (Modified) Incomplete Cholesky decomposition of 

the domain. To update the solution at line i in a sweep the band-matrix is used to transform the original sys- 

from the back to the front side, contributions of line tem of equations into an equivalent system that is 

i- 1 at the current z-plane and line i at the previous much better suited (better conditioned) to be solved 

z-plane are evaluated at the new iteration (sweep) by the Conjugate Gradient method. The resulting 

level, whereas contributions of the line i+l at the solver will be denoted as the (M)ICCG-solver. It is 

current z-plane and line i at the next z-plane are known that this (M)ICCG-solver has a much higher 

evaluated at the previous iteration (sweep) level. In a rate of convergence than the original CG-method. We 

sweep from the front to the back side, the reverse checked that the convergence rate of the (M)ICCG- 

holds. All nonlinearities at the line i are evaluated at solver was indeed very high : as a rule five iterations 

the previous iteration level, whereas all other con- were performed in every sweep. However, straight- 

tributions of line i are treated implicitly. As a result, forward implementation of the preconditioned algo- 

during the sweep only a tridiagonal matrix for each rithm on vectorcomputers turns out to give a dis- 

variable remains to be solved at line i. This tridiagonal appointing performance because the preconditioning 

matrix is solved directly. Line coupling is used to part of the algorithm is not completely vectorizable. 

iteratively couple the different transport equations : in This is because triangular systems have to be solved, 

each Gauss-Seidel sweep the different variables (u, v, giving first order recurrences. Several authors have 

w and r) are updated one after the other at a line. considered this problem in the past (e.g. Dubois et al. 

After each sweep the pressure is calculated from [17] and Van der Vorst [IS]) and suggested solutions 

a pressure-correction equation. During sweep 1 the to this problem that were, at least partially, successful. 

pressure is evaluated at the previous iteration level In our implementation, the unknowns are reordered 

I- 1. After this sweep the iterative velocity field u*, explicitly along the so-called hyperplanes in the com- 

u*, w* is obtained. The prediction of this velocity field putational domain (hyperplanes are planes for which 

is corrected according to : the sum i+j+k of the grid point indices i, j and k is 
constant). Use of this approach results in a code that 

du 
ui+ 1,Q.k = U> l/Z,,.k f - (&k -PI+ 1.j.k) 

dP 
(174 

is vectorizable, in turn for an increase in the number 
of operations that have to be performed during one 

dzl 
iteration of the (M)ICCG-algorithm as compared to 

v,~+ l/2,1: = 6+ Ij2.k + -(P&k -P;,j+ 1.k) 
dr, 

(17b) 
the straightforward implementation of the algorithm. 
A more detailed description of this approach, is given 

Wi,,,k+ l/Z = wG,k+ l/2 $- dw &j,k -d,j.k+ 1) (17c) 
by Schlichting and Van der Vorst [ 191. 

dp 
The sweep process at each time level was stopped 

when the dimensionless pressure-correction in each 
in which p’ is the pressure correction. These grid point and the dimensionless net heat flux through 
expressions are found by linearizing the velocities at the boundaries were below the criterion of 10-4. 
the new time level in the unsteady term of the momen- Typically IO-l.5 sweeps were necessary to reach this 
turn equations with respect to the pressure gradient , . 

criterion. 
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4. STEADY FLOW RESULTS 

As a test-case, calculations were performed for 
Ru = IO’ in which the top/bottom (~3 = 0, H) and 
front/back walls (c = 0, H) of the cubical cavity wcrc 
taken adiabatic. This is the configuration for which 
most of the three-dimensional calculations for air. 
existing in literature, have been performed. 

The governing system of equations (1) allows Tao 
spatial symmetries in the solution. Firstly, the solution 
can be symmetric around the line (H/2, H/2, Z) : 

u(x,,r,z,t) = -u(H-.Y,H-,,I,?) 

r(x,y, z. t) = -c(H-x. H-y. z, t) 

W(X,,v, 1. tj = M’(N --s, II-J,, r, f) 

T(s, I’, z, I) = (T,,+Tc)-T(H-_x,H-y,z,t) 

p(s,y.z,t) =p(H-x,/f-_v,:.t). 

Secondly, it can be symmetric in the plane z : 

u(x,)‘.:,t) = u(.x,y. H-z,tj 

r(.x, y. 2, f) = P(.Y. ,I’, H - -_, t) 

w(.v, ?‘. z. t) = - M:(.x, L’, H-z, t) 

T(.u,_y,r,t) = T(.r,>.H-z,t) 

p(x. ?‘, z, t) = p(x, ,v, H--z, t). 

zz 

(19) 

HP, 

(20) 

The present boundary conditions admit the same 
two symmetries. To reduce the computational effort 
required to solve the set of equations (I), these two 
symmetries were exploited to perform calculations 
over only a quarter of the entire enclosure. 

Grids with 16’, 30’, 603 and 120’ grid points were 
used (these numbers are the number of grid points 
over the entire domain, i.e. in the case of a symmetric 
computation the actual number of grid points 
employed in the calculation is a quarter of the above- 
mentioned numbers). To check the correctness of the 
assumption of spatial symmetry, a calculation was 
performed employing a 30’ grid without using the 
symmetry. The results checked to be the same as those 
obtained in the symmetric calculation on the same 
grid. Therefore, all subsequent calculations for this 
Rayleigh number were performed exploiting the spa- 

tial symmetries. 
The results of these calculations, together with 

those of previous studies are given in Table 1. Hal- 
denwang and Labrosse [20] used a pseudo-spectral 
method with 33 x 33 x 29 spectral functions to obtain 
their results; Le Peutrec and Lauriat ]9] employed a 
finite-difference method with 41 ’ grid points ; Fusegi 
rt al. [IO] used a finite-volume method with 62’ grid 
volumes. Also tabulated in Table 1 are results 
obtained for the two-dimensional square cavity n,ith 
adiabatic horizontal walls. These 2D results were 
obtained using grids with up to 240’ grid points and 
were checked to be grid independent. The same values 
for the two-dimensional cavity, up to four decimals. 
were obtained by Lc Quere [21] who used a pseudo- 
spectral method with up to 128 x 128 spectral func- 
tions. 

Four quantities are tabulated in Table I : Nu, which 
is the dimensionless heat flux through the hot vertical 
wall : 

.Nu VT2 -- ~~~ ~f~JS,:‘l’r:‘!~l).~,,d~d;: (21) 

rlnnl. the maximum of the vertical velocity along the 
line (x, H/2, H/2) (i.e. the horizontal line in the vertical 
midplane 2 = H/2 through the centre of the cavity) : 
u,,,,. the maximum of the horizontal velocity along 
the vertical line (H/2, y. Hj2) and the stratification 5’ 
(s (H/AT)(?T/$r)) in the cavity ccntre (H12, H/2. 
H/2). The velocity maxima u,,, and L’,,,,,, have been 
determined from a Lagrangian interpolation. using a 
second-order polynomial. The quantities tabulated in 
Table 1 have been scaled; NZA with Ka ’ ‘, I’,,,,,, with 
@BATH)“’ and u,,,, with (gjYATv)’ ‘. In a detailed 
analysis of the scalings in the twlo-dimensional square 
cavity, Henkes [3] has shown that these are indeed the 
proper scalings. 

As can be seen in Table 1, our results show that a 
high accuracy has been obtained. Roughly speaking, 
the calculated results are in the asymptotic regime for 
Nu, u,,, and S, i.e. the differences between the values 
on successive grids decrease approximately quad- 
ratically with the number of grid points. For (I,,,~,\ this 
is almost the case. Our results are in good agreement 
with those of Fuscgi et al. [lo] except for a,,,,, for 

which there is a difference of 3.9% with the value we 
have obtained on our finest grid. Also. the differences 
between the values obtained for the two-dimensional 

Table 1, Grid dependence of characteristic quantities for air at Ru = 10’ with the hori,x)ntal 
and lateral walls adiabatic 

Grid ~ NuRu-'~ z:,.,,'(g/?ATH)' ' u,n,,/(g8AT~1)' ' s 
_.~~-~~~-.-- ~~~~ 

16' 0.2705 0.2962 0.8509 0.9719 
301 0.2725 0.2620 0.8634 0.9293 
60' 0.2730 0.2597 0.8585 0.9138 
120' 0.2732 0.2585 0.8575 0.9103 

Haldenwang ef al. [20] 0.2723 _~ 

Le Peutrec et al. [9] 0.2738 _~ 

Fusegi et al. [ 1 l] 0.2773 0.2588 0.8910 
2D (240’) 0.2791 0.2618 0.8146 0.9132 

_~~___ 



Transition to time-periodicity of a natural-convection flow in a 3D differentially heated cavity 2933 

geometry and those for the three~imensional 
geometry are small ; the largest difference (5.0%) 
occurs for G,,. These results suggest that for the 
cubical cavity at Ra = 106, the flow in the vertical 
midplane (z = H/2) can in good approximation be 
considered as two-dimensional. 

The effects of the lateral walls of the cavity, per- 
pendicular to the z-direction, can be seen clearly in 
the z-dependence of &=, which has been plotted in 
Fig. 2(a) for Ru = 106. Here, xZ is the y-averaged 
Nusselt number at the hot wall : 

- 1 ?‘=H aI- 
Mu, = --@ 

s (-1 3.X x-0 
dv. (22) yrc 

The y-averaged Nusselt number decreases strongly as 
the lateral walls are approached. A similar behaviour 
can be found in z-profiles of the vertical velocity ; in 
Fig. 2(b) the z-dependence of v,,, has been depicted 
(i.e. in every plane z = constant, vmax at y = H/2 has 
been calculated just as for the mid-plane z = H/2 and 
the velocity profile has been plotted). Noteworthy is 
that u,,(z) has a local maxims close to the lateral 
walls (in Fig. 2(b) located at z = 0.068H). A behav- 
iour of this kind was predicted analytically by Biide- 
wadt 1221 for the cylindrical forced-convection flow 
of an incompressible fluid over a flat plate, in which 
the fluid at infinite distance from the plate was moving 
with constant angular velocity. Biidewadt employed 
assumptions used in bounda~-layer theory to per- 
form his analysis. For values of the Rayleigh number 
considered here (N 106), boundary layers will develop 
along the lateral walls. In the literature, relatively 

0.: 

(a) O.i 

0.4 

%I, 
(g@ATH)“’ 

FE. 2. Thre~~imensionality of the steady flow of air in the 
cubical cavity at &I = lo6 with adiabatic horizontal walls. 
(a) GZ as a function of de;e;$) ; (b) q,,, as a function of 

little attention has been paid to these boundary layers. 
Contrary to this, the boundary layer along the hot 
wall in the two-~mension~ cavity has been the subject 
of much investigation (especially concerning the scal- 
ing of the boundary layer, see e.g. Gill [23], Graebel 
[24] and Henkes [3]). To investigate the nature of the 
flow near the wall z = 0, the shear stresses d i 3 and (rZ3 
have been calculated in the plane z = 0. Here, 0, 3 and 
523 are given by : 

au aw 
013=:PV z+z ( > 

au dw 
cr,,=pv z+Y&y . ( > 

Tbe results of these calculations (for Ra = 10’) are 
given in Figs. 3(a) and (b), in which respectively the 
shear-stress vectors and the shear-stress magnitudes 
(,/((I:~+&)) are given. Clearly, the shear stresses 
have the largest magnitude in regions near the hot and 
cold walls. For comparison purposes, the .vtream lines 
in the 2D square cavity for Ra = IO6 have been plotted 
in Fig. 4. If Figs. 3(a) and 4 are compared, it is clear 
that the shear stresses in the plane z = 0 of the cubical 

Y 

FiG. 3. Shear stress distribution in the plane z = 0 of 
the cubical cavity at lia = lo6 with adiabatic horizontal 
and lateral walls: (a) shear-stress vectors; (b) shear-stress 

magnitude. 
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FIG. 4. Streamlines in the tlvo-dimensional square cavity with 
adiabatic horizontal walls at Ra = IO’. 

cavity are aligned almost tangentially to the stream- 
lines. 

Our results thus indicate that firstly, the flow in the 
plane z = H/2 of the cubical cavity and the flow in 
the square cavity are similar and secondly, that a 
maximum of the velocity occurs near the lateral walls, 
as predicted analytically for a cylindrical forced-con- 
vection flow. This suggests that the flow near the lat- 
eral walls is essentially driven by the flow that arises 
(because of buoyancy) near the vertical midplane 
(-_ = H/2) of the cavity. This also suggests that the 
distance in the r-direction should scale with H Rtr ’ ’ 

in the boundary layer. To check this scaling, the pro- 
files of P,,, have been plotted for different Rayleigh 
numbers in Fig. 5. Here. I‘,,;,, has been scaled with 
(,qflATH) I,1 which is the correct scaling for the ver- 
tical velocity near the walls. As can be seen in this 
figure, the different curves collapse into a single curve 
up to the maximum and the curves for higher Rayleigh 
numbers are close together at least up to 2 Ru’ “1 H = 

10, confirming the scaling of the =-coordinate in the 
boundary layer along the wall z = 0. 

5. UNSTEADY FLOW RESULTS 

Beyond a critical Rayleigh number the solution fat 
large time is no longer steady. To investigate the bi- 
furcation to an unsteady flow for air in the cubical. 
differentially heated cavity. calculations were per- 
formed for Rayleigh numbers in the range from 10” 
IO 3 x IO”. The horizontal walls (!, = 0. If) wcrc 
considered to be perfectly conducting (i.e. 7‘(.~) = 
r,,---(s/H)( r,, -T,)). The vertical front and back 
walls (Z = 0, Ii) were taken adiabatic 

Both the boundary conditions and the equations 
again permit the solutions to ohcq the sytnmelry 
relations. given by equations (19) and (20). It has been 
argued by Henry and Buffat [25j that. m the case of 
a Hopf-bifurcation (as does occur in the 2D square 
cavity and probably also in the 3D cubical cavity) 
either both of these symmetries should be maintained 
or both of them should be broken. For a differentialI> 
heated rectangular cavity (with a height/width ratio 
of 0.25 and a height/depth ratio of 0.5) with adiabalic 
horizontal and lateral walls, filled with a low-Prandtl 
number Huid (PI = 0 and Pu = 0.026). Hem-y and 
Buffat [25] found that both symtnetrics were indeed 
broken. To check whether these symmctxies arc also 
broken for air (I+ = 0.71) in the cubical cavity, ut‘ 
pcrformcd calculations on ;I 30’ grid without 
imposing the symmetries. for ;t Rayleigh number 
above the critical value. It was found that in the result- 
ing solution both spatial symmetries were present. 

Also. the amplitudes and the frequency of the oscil- 
lation wcrc the same as those obtained in a calculation 
on the same grid but with both spatial symmetries 
imposed. Hence, in all subsequent calculalions that 
wcrc performed, the spatial symmctrics wcrc imposed 
on the solution. 

To check the accuracy of our results. caloulationb 
have been performed using grids with up to 120’ 
volumes. for a Rayleigh number of 2.5 x 10” which 
is slightly larger than the critical calue at which 

FIG. 5. Scaling of the normal coordinate in the boundary layers along the lateral walls of the cubical cavity. 
filled with air. The horizontal as well as the lateral walls are adiabatic. 
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Table 2. Frequency and amplitudes.(d) of the oscillation in characteristic quantities, obtained on the 
different grids for air at Ra = 2.5 x 106 in the cavity with conducting horizontal and adiabatic lateral 

wails 

Grid fHi(sPAM “’ b(a Ra- ““> 

16’ 0.158 0.00724 0.0901 0.542 
303 0.296 0.00255 0.120 0.118 
60’ 0.263 0.0109 0.115 0.119 

1203 0.266 (9.83 kO.24) x 1O-3 0.122+0.00.5 0.139~0.~3 

the flow bifurcates from steady to periodic. On all 
grids a periodic solution was obtained. It was 
checked by time-step refinement that a time-step of 
At,/(gBATH)/H = l/16 gave almost time-step inde- 
pendent results. The results of these calculations are 
given in Table 2. Tabulated is the frequency with which 
the large-time solution oscillates, together with the 
amplitudes of the oscillations in u,,,, G Ra- ‘I4 and 
u,,,,,. For the solution on the 1203 grid the calculation 
could, because of the limited amount of CPU-time 
available, not be brought to a full completion (the 
calculation on the 120’ grid used some 100 h of CPU- 
time on a single processor of a CRAY-YMP4 and was 
still not fully converged ; contrary to this, a typical 
calculation on a 603 grid only took some 9 h of CPU- 
time to be fully converged). The consequences of this 
can be seen in Fig. 6, in which the final part of the 
calculated time~volution of umax on the 1203 grid has 
been depicted. A small decaying oscillation in the 
amplitude is still present in the solution after an inte- 
gration time of 5OOH/J(gBA7’H). This results in small 
uncertainties in the determination of the amplitudes 
which have been included in Table 2. For the other 
grids, the calculations could be continued far enough 
to damp this oscillation in the amplitudes completely. 
Unlike the amplitudes, the frequency showed no vari- 
ation during the evolution of the solution. When the 
obtained values are compared for the different grids, 
it can be seen that the differences between the 603 and 
I 203 grids are small for the frequency f and for v,,,,, 

(respectively 1.1% and 5.7%) but they are somewhat 
larger for Nu and u,,,, (respectively 11% and 14%). 
Clearly, the 163 and the 303 grids are too coarse to 
capture all the physics of the flow accurately. At least 
a 1 203 grid is necessary to calculate the A ow accurately 
in all characteristic quantities, although a 60’ grid is 
sufficient to capture the most important physical 
aspect accurately, namely the frequency of the oscil- 
lation and thus the instability mechanism of the flow. 
To estimate the critical Rayleigh number, calculations 
have been performed for different Rayleigh numbers, 
mainly on the 603 grid. Based on these calculations, 
the critical Rayleigh number @a,,) is estimated to be 
between 2.25 x IO6 and 2.35 x 106. This value is only 
slightly larger than the critical Rayleigh number 
obtained for the two-dimensional cavity, which was 
found to be approximately 2.10 x 1 O6 (Henkes [3] and 
Winters 161). The fact that the critical Rayleigh num- 
ber for the cubical cavity is slightly larger than for the 
square cavity seems to be attributable to the larger 
friction in the 3D-geometry because of the presence 
of the lateral walls. 

Fusegi et al. 1111 performed a single calculation 
using a grid with 62’ volumes at Ra = 8.5 x 106. They 
found a frequency fH~~(g~AT~~ = 0.33, which is 
24% larger than the value we have obtained. The most 
likely reason for this large difference is that Fusegi et 
al. obtained a solution corresponding to a different 
branch of solutions and the difference is probably 
unrelated to the large discrepancy in the Ray- 

300. 
t ~9~5~~H)~j’ /H 

530. 

FIG. 6. u,,, as a function of time on the 120’-grid at Ra = 2.5 x IO6 with conducting horizontal walls. 
Visible are the small variations in the amplitude. 
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leigh numbers considered (for the 2D square cavity, 
Henkes [3] found that the frequency, scaled with 
,/!(g/?ATH)/H, is almost independent of the Rayleigh 
number). Indeed, for the 2D square cavity, Le Quere 
and Alziary de Roquefort [5] obtained three different 
frequencies, ,fH/d’(gjATH) = 0.255. 0.29 and 0.32. 
respectively. each corresponding to a different branch. 
It appears that the highest of these frequencies 
corresponds to the branch for which Fusegi et rrl. 
calculated the 3D analoguc. 

Comparison of the frequency of the oscillation at 
Ra = 2.5 x 1Oh in the three-dimensional cubical cavity 
(.fH/J(gpATH) = 0.266) with the frequency in the 
two-dimensional square cavity (,fH/J(gBATH) = 

0.256) and of the (estimated) critical Rayleigh num- 
bers for these cases, shows that the values are indeed 
close (differences of 4% in the frequency and 10% in 
the critical Rayleigh number). This suggests that the 
instability in the three-dimensional cubical cavity is 
essentially a two-dimensional instability, very similar 
to the one observed in the two-dimensional cavity. 
To investigate this point more closely, the time 
dependence of the temperature pcrt&ation for 
Ra = 2.5 x lOh has been visualized. To obtain the per- 
turbation. in every grid point the local time-averaged 
temperature has been subtracted from the local 
instantaneous temperature at several instants during 
one period of the oscillation. This results in the 
appearance of hot and cold spots at those places where 
the local instantaneous temperature at the depicted 
time-instant is higher/lower than the local time-aver- 
aged temperature. The growth, movement and decay 
of these spots can be seen in Fig. 7, which shows eight 
equidistant time-instants of one single period of the 
oscillation in the plane -_ = H/2. The birth of a hot 
spot in the lower left corner can be seen clearly (at the 
arrow). This spot travels up along the left vertical wall 
until it is dissipated in the upper part of the vertical 
boundary layer after about 3/2 periods. Because of 
the symmetry of the flow, a similar pattern can be 
found in the right half of the plane. The same evolu- 
tion of hot and cold spots was found in the case of 
the two-dimensional square cavity by Henkes [3] 
again suggesting that the instability mechanisms in 
the two- and three-dimensional geometries are the 
same. 

These results suggest that the no-slip boundary con- 
ditions at the lateral walls do not change the instability 
mechanism fundamentally. To investigate the influ- 
ence on the instability mechanism of the thermal 

boundary condition at the lateral walls, these walls 
were taken perfectly conducting instead of adiabatic 
(i.e. a linear temperature profile was prescribed on 
these walls). The frequency of the oscillation on the 
60’ grid at RLI = 2.5 x 10h was found to be 
,fH/J(g/lATH) = 0.276, only 3.8% larger than in the 
case of adiabatic lateral walls. This suggests that the 
instability mechanism responsible for the first bifur- 
cation, is not very susceptible to the thermal boundary 
conditions applied at the lateral walls and again con- 

firms the idea that the first instability is mainly of a 
two-dimensional nature. 

The probable origin of the instability and the result- 
ing oscillation in the flow can be understood from Fig. 
8. It shows the isotherms in the plant 5 = H,‘? at :i 
Rayleigh number of 2.0 x 10” which is only slightly 
below the critical value. The important feature in the 
flow can be found in the horizontal boundary layers 
and especially in the lower left and upper right corners 
(which were also the places where the hot and cold 
spots originated from). In these regions. the vertical 
temperature gradient ST/C:J, is negative i.e. the tem- 

perature decreases and hence the density incrcascs 
with height. In these regions therefore. light fluid is 
below heavy fluid and it is a well-established fact from 
hydrodynamic stability theory (see. e.g. Drazin and 
Reid [26]) that the occurrence of such a density dis- 
tribution in a flow can lead to an instability and oscil- 

lations The notion that this unstable density gradient 
is responsible for the oscillation is supported by Fig. 
9, which shows the amplitude of the oscillation in 
the temperature in the plane r = H/2. Clearly. the 
magnitude of the oscillations is largest in the lower 
left and upper right corners. 

Although these results indicate that the mechanism 
behind the first instability in the 3D cubical cavity is 
of a two-dimensional nature. it must be expected that 
the oscillations in the cavity arc also inAuenced by the 
presence of the lateral walls. That there is indeed a 
marked influence of these walls on the strwtwr of the 
oscillations, is shown in Figs. IO(a) and (b). In Fig. 
IO(a). the contour lines of equal amplitude of the 
temperature oscillations in the plane y = yil0 for 
Ra = 2.5 x lOh are shown. The amplitude has a some- 
what surprising and distinct distribution as a function 
of depth (3). That there is indeed a regular pattern. is 
shown in Fig. 10(b), which shows the amplitude as a 
function of z at .Y = 0.048H in the plane r = t-I,‘lO. 
Figure 11 (b) suggests, that the influence of the lateral 
walls leads to a regular, wave like pattern in the Z- 
direction. For the cubical cavity. the wavelength is 
approximately I!3 the cavity depth. To cheek this 
influence of the lateral walls on the structure of the 
oscillating flow further, calculations were performed 
for two cavities with different depth,height (.4,) aspect 
ratios, namely for 4, = 2 and for ..I, = 0.5. In both 
cases, the flow just after the first bifurcation vvas cai- 
culated; for the cavity <4, = 2. the Rayleigh number 
taken was 2.5 x IO6 and for the cavity with 4, = 0.5 
it was 6 x IOh. The amplitude distributions in the plane 
,r = H/l0 and along the lint .Y = 0.048H in the plane 
r = H/IO are shown in Figs. 11 (a), (b) (.4, = 3) and 
12(a), (b) (A, = 0.5). As is evident from these Iigure\. 
the wave like pattern is present for -4, = 2 (with a 
wavelength of approximately I ;5 the cavity depth). 
For the cavity with A, = 0.5. them is no wave-like 
pattern. The amplitude is roughly constant over 
approximately 70% of the cavity depth and then drops 
off. Basically, this looks very much like an extension 
of the 2D-amplitude distribution, stretched in the z- 
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FIG. 7. Temperature perturbations, during one period of the oscillation, in the vertical midplane z = H/2 
of the cubical cavity at Ra = 2.5 x IO6 with conducting horizontal walls. The birth of a hot spot occurs at 

the arrow. Dotted contour lines correspond to cold spots. 
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FE. 8. Isotherms in the vertical midplane z = H/2 of the 
cubical cavity at Ra = 2 x lo6 with conducting horizontal 
walls. Note the unstable temperature distribution near the 

lower left and upper right corners of the plane. 

(b) 

FIG. IO. Three-dimensionality in the distribution of the 
amplitude of temperature oscillations in the cubical cavity 
with conducting horizontal walls at Ra = 2.5 x 10’. (a) Con- 
tour lines in the plane y = H/IO; (b) amplitude distribution 

in the plane y = H/IO along the line x = 0.048H. 

X 

FIG. 9. Amplitude of the temperature oscillations in the 
vertical midplane z = H/2 of the cubical cavity at 

Ra = 2.5 x IO6 with conducting horizontal walls. 

direction and modified only in the boundary layers 
along the lateral walls. Hence, if the cavity depth is 
equal to or larger than its width, the lateral walls 
change the structure of the oscillating flow in the third 

dimension over the entire depth of the cavity, whereas 
the structure is changed only in the boundary layers 
along the lateral walls if the cavity depth is equal to 
half the cavity width. 

It is interesting to note that Penot et al. [27] per- 
formed a stability analysis of the 2D-flow for insta- 
bilities in the third dimension. They studied the stab- 
ility of the how in a cavity with a height/width-ratio 
of 4 and with adiabatic horizontal walls. The stability 
analysis was performed by taking the solution of the 
Navier-Stokes equations for the 2D cavity and 
extending it in the third dimension through an expan- 
sion in a Fourier-series and by applying periodic 

boundary conditions in this third dimension. Penot et 
al. noted that for a 3D-cavity with its depth equal 
to its width, the 2D-solution was unstable to a 3D- 

FIG. I 1. Same as for Fig. IO but for the cavity with ‘4, = 2. 

instability. This instability only had a small influence 
on the mean flow and did not introduce new fre- 
quencies in the flow. Also, for a cavity with its depth 
equal to half its width, no such instability appeared. 
Although this stability analysis was performed for a 
configuration different from the one for which our 
direct simulations were performed, there seems to be 
close agreement between the obtained results. The 
structure of the oscillating flow is mainly two-dimen- 
sional for a cavity with its depth equal to half its width 
and becomes three-dimensional if the depth becomes 
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0.0 

(4 z/H 0.5 

FIG. 12. Same as for Fig. 10 but for the cavity with A, = 0.5 
atRa=6x106. 

larger than or equal to the cavity width. The mean 
flow, however, is not changed significantly (except 
near the lateral walls) and is mainly two-dimensional. 

Apart from the remarkable structure in the z-depen- 
dence of the amplitude of the temperature oscillation, 
the three-dimensionality also leads to clearly detect- 
able phase differences between oscillations at different 
z-positions inside the cavity. For the cubical cavity, 
these phase differences have been depicted in Fig. 13. 
This figure shows, for the line (x/H, y/H) = (0.048, 
O.l), both the z-dependence of the amplitude in the 
temperature oscillation as well as the phase differences 
between the temperature oscillations at the marked 

positions compared with the temperature oscillation 
at the vertical midplane z = H/2. Here, the phase 
difference is taken to be negative (i.e. it is assumed 
that the oscillation at z = H/2 leads the oscillations at 

all other locations). Clearly, the phase differences are 
correlated with the distribution of the amplitude : the 
phase differences are small within a peak in the ampli- 
tude distribution. Near the minimum values (‘nodes’) 
of the amplitude, however, there is a large jump in 
the phases. This behaviour is, in principle, similar to 
the behaviour of a standing-wave like oscillation. 
However, for a true standing-wave, the jumps in the 
phases would be rc in magnitude, whereas the jumps 
in the present situation are only approximately a/2 in 
magnitude. 

6. CONCLUSIONS 

Both the steady and the periodic flow regime have 
been investigated in an air-filled differentially heated 
cubical cavity. 

For the steady flow regime, the top/bottom and 
front/back walls of the cavity were taken adiabatic. 
For Ra = 106, systematic grid refinement up to 1203 
grid points, showed that accurate results were 
obtained. It was found that the calculated results for 
the cubical cavity differed only little from those 
obtained for the square cavity and that the influence 
of the front/back (lateral) walls is restricted mainly to 
a small portion of the cavity, adjacent to these walls, 
where a boundary layer is formed. By performing 
calculations for several different Rayleigh numbers, it 
was checked that the coordinate perpendicular to the 
lateral walls scales with H Ra- ‘14. 

The periodic flow regime has been studied mainly 

for the situation that the top/bottom walls were taken 
perfectly conducting, whereas the front/back walls 
were adiabatic. The flow becomes unsteady at a criti- 
cal Rayleigh number which is estimated to be between 

0.3 

JegJ- 
i m ‘El JIH 1.0 

I 

q _D--[3-B_ 

d 
73~” 

phaseshift : 
, 

-4.0 1 

FIG. 13. Three-dimensionality in the temperature oscillations in the cubical cavity with conducting 
horizontal walls at Ra = 2.5 x 106. The z-dependence of the amplitude in the temperature oscillations 
(upper half of the plot) as well as the phase differences relative to z = H/2 (lower half of the plot) have 

been depicted in the plane y = H/l0 along the line x = 0.048H. 
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2.25x IO6 and 2.35x IO”, some 10% larger than in 
the square cavity. The amplitudes in the oscillations 
showed some grid-dependence even though grids with 
up to 1203 grid points were employed. The frc- 

quency however, was grid-independent and found to 
be ,f’H/J(gpATH) = 0.266. only 4% larger than the 
value found in the square cavity at the same Raylcigh 
number. Also the time-evolution of temperature per- 
turbations in the plane I = H/2 of the cubical cavity 
was similar to the evolution observed in the square 
cavity. This suggests that the same type of instability 
occurs both in the two-dimensional and the three- 
dimensional cavity. The isotherms in the steady flow 
just below the critical Rayleigh number show that in 
the horizontal boundary layers. density increases with 
height. It is well known that this is an unstable dis- 
tribution which is related to the Rayleigh-Benard 
instability. That this unstable density distribution is 
indeed responsible for the bifurcation is suggested by 
the time-evolution of the temperature perturbations. 
which are created in this unstable region and by the 
amplitudes of the oscillations which are largest in this 
region. 

The influence of the lateral walls in the cubical 
cavity is most pronounced if the structure of the oscil- 
lating flow is considered. The amplitude of the tem- 
perature oscillations has a regular, wave like pattern 
as a function of the depth. This pattern is also found 
if the depth is increased to twice the cavity width but 
it disappears if the depth is reduced to half the cavity 
width. The amplitude is then modified only in thin 
layers near the lateral walls. Although obtained for a 
configuration somewhat different from ours. the 
results of a stability analysis. performed by Pcnot ct 
~1. [27]. of the 2D flow seem to be in agreement with 
our results. 
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